
Safe Imperative Metaprogramming
with Contextual Linear References

Maite Kramarz
University of Toronto

1. MetaML & Scope Extrusion

let l = mut <1>
(* val l = ... : Ref Code Int *)
let f = <fun x => $(l := <x+1>; <2>)>
(* val f = <fun x => 2> : Code (Int −> Int) *)
let c = !l
(* val c = <x+1> : Code Int *)
run c
(* error: x is a free variable *)

〈e〉 run e$e

Splicing:
Assembles code
fragments into

larger ones

Quoting:
Creates a code
fragment to be
evaluated later

Running:
Executes a code

fragment in
current stage

Naive implementation of references is unsound
(variables can escape their scopes!)

2. How can this be prevented?

Calcagno et al. (2003):
“Thou shalt not put

non-dead code
fragments containing
dynamic variables into

a reference.”

This Abstract:
“Thou shalt not access
a reference containing
a code fragment until
its surrounding scope

returns it to you.”

BER MetaOCaml:
“Thou shalt be very

careful about putting
code fragments into

references, as this may
cause errors.”

3. Linearity
Why How

4. Contextualizing 5. Putting it Together
1. We propose a novel

combination of MetaML
style MSP with linear
types.

2. This can statically forbid
scope extrusion, but
requires additional
theoretical machinery.

3. MSP + linearity can help
programmers write code
that bridges the gap
between abstract and
performant.

● Linearity helps us model a
kind of ownership.

● Once a reference is altered,
the linear type system only
allows us to interact it with
it again when that scope is
evaluated (no extrusion!).

● Note we still need a way to
track open code references.

● We believe we are the first
to combine a MetaML-style
system with linear types!

● We adapt our system from
Taha et al. and Walker.

● Rather than separate read
and write operations, we
follow Walker and Morissett
et al. in using a ‘swap.’

Our semantics tracks context,
stage, and variable store:

While S represents concrete
values at stage 0, 𝚪 tracks the
higher-staged typing data for

binders we pass under.

1. References carry a context to
type higher-staged bindings.

2. Substitutions on a reference are
deferred in 𝛔 to avoid mutation
inside the heap.

Scan for references!

